CORE READING

All of the Core Reading for the topics covered in this booklet is contained in
this section.

Chapter 1 — Cashflow models

The practical work of the actuary often involves the management of
various cashflows. These are simply sums of money, which are paid or
received at different times. The timing of the cashflows may be known
or uncertain. The amount of the individual cashflows may also be known
or unknown in advance. From a theoretical viewpoint one may also
consider a continuously payable cashflow.

For example, a company operating a privately owned bridge, road or
tunnel will receive toll payments. The company will pay out money for
maintenance, debt repayment and for other management expenses.
From the company’s viewpoint the toll payments are positive cashflows
(i.e. money received) while the maintenance, debt repayments and other
expenses are negative cashflows (ie money paid out). Similar cashflows
arise in all businesses. In some businesses, such as insurance
companies, investment income will be received in relation to positive
cashflows (premiums) received before the negative cashflows (claims
and expenses).

Where there is uncertainty about the amount or timing of cashflows, an
actuary can assign probabilities to both the amount and the existence
of a cashflow. In this Subject we will assume that the existence of the
future cashflows is certain.

In this section, we provide examples of practical situations with
cashflows that are assumed to be certain. In reality this may not be the
case as the counterparty of a particular cashflow may not be able to pay
out. For example, a company may fail and not be able to pay out interest
on issued bonds.
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The term ‘zero-coupon bond’ is used to describe a security that is simply
a contract to provide a specified lump sum at some specified future date.
For the investor there is a negative cashflow at the point of investment
and a single known positive cashflow on the specified future date.

A body such as an industrial company, a local authority, or the
government of a country may raise money by floating a loan on the stock
exchange.

In many instances such a loan takes the form of a fixed-interest security,
which is issued in bonds of a stated nominal amount.

The characteristic feature of such a security in its simplest form is that
the holder of a bond will receive a lump sum of specified amount at some
specified future time together with a series of regular level interest
payments until the repayment (or ‘redemption’) of the lump sum.

The investor has an initial negative cashflow, a single known positive
cashflow on the specified future date, and a series of smaller known
positive cashflows on a regular set of specified future dates.

With a conventional fixed-interest security, the interest payments are all
of the same amount. If inflationary pressures in the economy are not
kept under control, the purchasing power of a given sum of money
diminishes with the passage of time, significantly so when the rate of
inflation is high. For this reason some investors are attracted by a
security for which the actual cash amount of interest payments and of
the final capital repayment are linked to an ‘index’ which reflects the
effects of inflation.

Here the initial negative cashflow is followed by a series of unknown
positive cashflows and a single larger unknown positive cashflow, all on
specified dates. However, it is known that the amounts of the future
cashflows relate to the inflation index. Hence these cashflows are said
to be known in ‘real’ terms.

Page 6 © BPP ActEd



Note that in practice the operation of an index-linked security will be
such that the cashflows do not relate to the inflation index at the time of
payment, due to delays in calculating the index. It is also possible that
the need of the borrower (or perhaps the investors) to know the amounts
of the payments in advance may lead to the use of an index from an
earlier period.

If cash is placed on deposit, the investor can choose when to disinvest
and will receive interest additions during the period of investment. The
interest additions will be subject to regular change as determined by the
investment provider. These additions may only be known on a day-to-
day basis. The amounts and timing of cashflows will therefore be
unknown.

Equity shares (also known as ‘shares’ or ‘equities’ in the UK and as
‘common stock’ in the USA) are securities that are held by the owners
of an organisation. Equity shareholders own the company that issued
the shares. For example if a company issues 4,000 shares and an
investor buys 1,000, the investor owns 25% of the company. In a small
company all the equity shares may be held by a few individuals or
institutions. In a large organisation there may be many thousands of
shareholders.

Equity shares do not earn a fixed rate of interest as fixed-interest
securities do. Instead the shareholders are entitled to a share in the
company'’s profits, in proportion to the number of shares owned.

The distribution of profits to shareholders takes the form of regular
payments of dividends. Since they are related to the company profits
that are not known in advance, dividend rates are variable. It is expected
that company profits will increase over time. It is therefore expected
also that dividends per share will increase — though there are likely to be
fluctuations. This means that in order to construct a cashflow schedule
for an equity it is necessary first to make an assumption about the
growth of future dividends. It also means that the entries in the cashflow
schedule are uncertain — they are estimates rather than known
quantities.
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In practice the relationship between dividends and profits is not a simple
one. Companies will, from time to time, need to hold back some profits
to provide funds for new projects or expansion. They may also hold
back profits in good years to subsidise dividends in years with poorer
profits. Additionally, companies may be able to distribute profits in a
manner other than dividends, such as by buying back the shares issued
to some investors.

Since equities do not have a fixed redemption date, but can be held in
perpetuity, we may assume that dividends continue indefinitely (unless
the investor sells the shares or the company buys them back), but it is
important to bear in mind the risk that the company will fail, in which
case the dividend income will cease and the shareholders would only be
entitled to any assets which remain after creditors are paid. The future
positive cashflows for the investor are therefore uncertain in amount
and may even be lower, in total, than the initial negative cashflow.

An ‘interest-only’ loan is a loan that is repayable by a series of interest
payments followed by a return of the initial loan amount.

In the simplest of cases, the cashflows are the reverse of those for a
fixed-interest security. The provider of the loan effectively buys a fixed-
interest security from the borrower.

In practice, however, the interest rate need not be fixed in advance. The
regular cashflows may therefore be of unknown amounts.

It may also be possible for the loan to be repaid early. The number of
cashflows and the timing of the final cashflows may therefore be
uncertain.

12 Arepayment loan is a loan that is repayable by a series of payments that

include partial repayment of the loan capital in addition to the interest
payments.

In its simplest form, the interest rate will be fixed and the payments will
be of fixed equal amounts, paid at regular known times.
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The cashflows are similar to those for an annuity certain.

As for the ‘interest-only’ loan, complications may be added by allowing
the interest rate to vary or the loan to be repaid early. Additionally, it is
possible that the regular repayments could be specified to increase (or
decrease) with time. Such changes could be smooth or discrete.

It is important to appreciate that with a repayment loan the breakdown
of each payment into ‘interest’ and ‘capital’ changes significantly over
the period of the loan. The first repayment will consist almost entirely
of interest and will provide only a very small capital repayment. In
contrast, the final repayment will consist almost entirely of capital and
will have a small interest content.

An annuity certain provides a series of regular payments in return for a
single premium (ie a lump sum) paid at the outset. The precise
conditions under which the annuity payments will be made will be
clearly specified. In particular, the number of years for which the annuity
is payable, and the frequency of payment, will be specified. Also, the
payment amounts may be level or might be specified to vary — for
example in line with an inflation index, or at a constant rate.

The cashflows for the investor will be an initial negative cashflow
followed by a series of smaller regular positive cashflows throughout
the specified term of payment. In the case of level annuity payments,
the cashflows are similar to those for a fixed-interest security.

From the perspective of the annuity provider, there is an initial positive
cashflow followed by a known number of regular negative cashflows.

The theory can be extended to deal with annuities where the payment

term is uncertain, that is, for which payments are made only so long as
the annuity policyholder survives.
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Insurance contracts

The cashflows for the examples covered in this section differ than the
previous in that the frequency, severity, and/or timing of the cashflow
may be unkown. For example, a typical cover of a life cover may have a
specified date on which a pre-agreed amount is paid on survival — but
the benefit payment may not be paid if the individual does not survive.

Similarly, a pension pays out a known amount at a specified time per
month, but only if the individual is alive. Typically the severity is known
and pre-specified in life-insurance contracts.

On the other hand, a non-life (general) insurance cover tends to not have
known severities. For example, the cost of a car accident may range
from a few pounds in the case of a small collision to millions in case of
a major accident that caused death.

A pure endowment is an insurance policy which provides a lump sum
benefit on survival to the end of a specified term usually in return for a
series of regular premiums. In some cases a lump-sum premium is paid.
In this case, the cashflows for the policyholder will be a negative
cashflow at inception and a positive cashflow at the end of term, only if
the policyholder has survived.

The cashflows for the policyholder will be a series of negative cashflows
throughout the specified term or until death, if earlier. A large, positive
cashflow occurs at the end of the term, only if the policyholder has
survived. If the policyholder dies before the end of the term there is no
positive cashflow.

From the perspective of the insurer, there is a stream of regular positive
cashflows which cease at a specified point (or earlier, if the policyholder
dies) followed by a large negative cashflow, contingent on policyholder
survival.

An endowment assurance is similar in that it provides a survival benefit
at the end of the term, but it also provides a lump sum benefit on death
before the end of the term. The benefits are provided in return for a
series of regular premiums
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The cashflows for the policyholder will be a series of negative cashflows
throughout the specified term or until death, if earlier, followed by a large
positive cashflow at the end of the term (or death, if earlier). Depending
on the terms of the policy, the amount payable on death may not be the
same as that payable on survival.

From the perspective of the insurer, there is a stream of regular positive
cashflows which cease at a specified point (or earlier, if the policyholder
dies) followed by a large negative cashflow. The negative cashflow is
certain to be paid, but the timing of that payment depends on
whether/when the policyholder dies.

A term assurance is an insurance policy which provides a lump sum
benefit on death before the end of a specified term usually in return for
a series of regular premiums.

The cashflows for the policyholder will be a series of negative cashflows
throughout the specified term or until death (or one negative cashflow
at inception if paid on a lump-sum basis), if earlier, followed by a large
positive cashflow payable on death, if death occurs before the end of the
term. If the policyholder survives to the end of the term there is no
positive cashflow.

From the perspective of the insurer, there is a stream of regular positive
cashflows which cease at a specified point (or earlier, if the policyholder
dies) followed by a large negative cashflow, contingent on policyholder
death during the term.

Generally, the negative cashflow (death benefit), if it occurs, is
significantly higher than the positive cashflow (premiums), when
compared to, say, a pure endowment. This is because, for each
individual policy, the probability of the benefit being paid is generally
lower than for endowments because it is contingent on death, rather
than on survival.

A contingent annuity is a similar contract to the annuity certain but the
payments are contingent upon certain events, such as survival, hence
the payment term for the regular cashflows (which will be negative from
the perspective of the annuity provider) is uncertain.
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Typical examples of contingent annuities include:

. a single life annuity — where the regular payments made to the
annuitant are contingent on the survival of that annuitant.

. a joint life annuity — which covers two lives, where the regular
payments are contingent on the survival of one or both of those
lives.

. a reversionary annuity — which is based on two lives, where the
regular payments start on the death of the first life if, and only if,
the second life is alive at the time. Payments then continue until
the death of the second life.

A typical car insurance contract lasts for one year. In return for a
premium which can be paid as a single lump sum or at monthly intervals,
the insurer will provide cover to pay for damage to the insured vehicle
or fire or theft of the vehicle, known as ‘property cover’. In many
countries, such as the UK, the contract also provides cover for
compensation payable to third parties for death, injury or damage to
their property, known as ‘liability cover’.

Depending on the terms of the policy, the insurance company may settle
claims directly with the policyholder or with another party. For example,
in the case of theft or total loss, the insurance company may pay a lump
sum to the policyholder in lieu of that loss. In the case of damage to the
insured vehicle the insurance company may settle the claim directly with
the party undertaking the repairs without involving the policyholder. In
the case of third party liability claims the insurance company may settle
the claims directly with the third party.

In some cases, the policyholder may be required to cover the cost of
damage or repairs first before the insurance company settles the claim,
in which case the insurance company will pay the policyholder directly.

The cashflows for the policyholder will usually be a single negative
cashflow at the beginning of the year. Further cashflows only take place
in the event of a claim. If the policyholder has to pay for repairs or
compensation, this will incur a further negative cashflow, followed by a
positive cashflow when the insurance company settles the claim. If the
insurance company settles the claim directly with the repair company or
third party, the policyholder may not experience further cashflows.
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From the insurer’s perspective there will be a positive cashflow at the
beginning of the policy, followed by a negative cashflow when the claim
is settled.

The timing of the cashflows will depend on how long the claim takes to
be reported and settled. Typically property claims take less time to settle
than liability claims. Where liability claims involve disputes, for example
necessitating court judgements, they can take years to settle and the
amounts are less certain.

Cashflows tend to be short term and are payable within the year.

A typical health insurance contract lasts for one year. In return for a
premium, the policyholder is entitled to benefits which may include
hospital treatment either paid for in full or in part, and/or cash benefits
in lieu of treatment, such as a fixed sum per day spent in hospital as an
in-patient.

From the policholder’s perspective the cashflows will include a negative
cashflow at the beginning of the year followed by positive cashflows in
the event of a claim in the case of a cash benefit. Where the insurance
company pays for hospital treatment directly, the policyholder may
experience no more cashflows after paying the initial premium.

From the perspective of the insurer, there will be an initial positive
cashflow at the start of the policy followed by negative cashflows in the

event of a claim, when those claims are settled.

Cashflows tend to be short term and are payable within the year.
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Chapter 4 — The time value of money

Interest may be regarded as a reward paid by one person or organisation
(the borrower) for the use of an asset, referred to as capital, belonging
to another person or organisation (the lender).

When the capital and interest are expressed in monetary terms, capital
is also referred to as principal. The total received by the lender after a
period of time is called the accumulated value. The difference between
the principal and the accumulated value is called the interest. Note that
we are assuming here that no other payments are made or incurred (eg
charges, expenses).

If there is some risk of default (ie loss of capital or non-payment of
interest) a lender would expect to be paid a higher rate of interest than
would otherwise be the case.

Another factor that may influence the rate of interest on any transaction
is an allowance for the possible depreciation or appreciation in the value
of the currency in which the transaction is carried out. This factor is
very important in times of high inflation.

Interest

The essential feature of simple interest is that interest, once credited to
an account, does not itself earn further interest.

Suppose an amount C is deposited in an account that pays simple
interest at the rate of ix100% per annum. Then after n years the
deposit will have accumulated to:

c(+ni) (1.1)

When n is not an integer, interest is paid on a pro-rata basis.

The essential feature of compound interest is that interest itself earns
interest.
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Suppose an amount C is deposited in an account that pays compound
interest at the rate of ix100% per annum. Then after n years the
deposit will have accumulated to:

c(+i)" (1.2)

For t; <t, we define A(t;,t;) to be the accumulation at time t, of an
investment of 1 at time ¢, .

The number A(t,,t,) is often called an accumulation factor, since the
accumulation at time t, of an investment of C at time t, is, by
proportion:

CA(ty,t,) (1.3)

A(n) is often used as an abbreviation for the accumulation factor
A(0,n).

Now let t, <t <t, and consider an investment of 1 at time ty. The
proceeds at time t, will be A(ty,t,) if one invests at time ¢, for term
t, —ty, or A(ty,t))A(ty,ty) if one invests at time t, for term ¢, -t, and
then, at time t,, reinvests the proceeds for term t, — t;. In a consistent

market these proceeds should not depend on the course of action taken
by the investor. Accordingly, we say that under the principle of
consistency:

Altg,tn) = Alto, t1)Alty, t3) ... A(t,_q,t,) (1.4)
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Present values

It follows by formula (1.2) that an investment of:

c/a+i" (2.1)
at time 0 (the present time) will give C at time n>0.
This is called the discounted present value (or, more briefly, the present
value) of C due at time n>0.
We now define the function:

v =1/(1+i) (22)

It follows It follows by formulae (2.1) and (2.2) that the discounted
present value of C due at time n>0 is:

cv" (2.3)

Discount rates

An alternative way of obtaining the discounted value of a payment is to
use discount rates.

As has been seen with simple interest, the interest earned is not itself
subject to further interest. The same is true of simple discount, which
is defined below.

Suppose an amount C is due after n years and a rate of simple
discount of d per annum applies. Then the sum of money required to
be invested now to amount to C after n years (ie the present value of
C)is:

C(1- nd) (3.1)
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In normal commercial practice, d is usually encountered only for
periods of less than a year. If alender bases his short-term transactions
on a simple rate of discount d then, in return for a repayment of X after
aperiod t (t <1) he will lend X(1-td) at the start of the period. In this

situation, d is also known as a rate of commercial discount.

As has been seen with compound interest, the interest earned is subject
to further interest. The same is true of compound discount, which is
defined below.

Suppose an amount C is due after n years and a rate of compound (or
effective) discount of d per annum applies. Then the sum of money
required to be invested now to accumulate to C after n years (ie the
present value of C) is:

c(1-d)" (3.2)

In the same way that the accumulation factor A(n) gives the
accumulation at time n of an investment of 1 at time 0, we define v(n)
to be the present value of a payment of 1 due at time n . Hence:

1

A (3.3)

v(n) =

Effective rates are compound rates that have interest paid once per unit
time either at the end of the period (effective interest) or at the beginning
of the period (effective discount). This distinguishes them from nominal
rates where interest is paid more frequently than once per unit time.

We can demonstrate the equivalence of compound and effective rates
by an alternative way of thinking about effective rates.
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An investor will lend an amount 1 at time 0 in return for a repayment of
(1+1i) at time 1. Hence we can consider i to be the interest paid at the

end of the year. Accordingly i is called the rate of interest (or the
effective rate of interest) per unit time.

So denoting the effective rate of interest during the n th period by i,,
we have:

i A(n)-A(n-1)
=27 A 4.1
n A(n-1) (@1
If i is the compound rate of interest, we have:
nn _ An—1
L) il Ced) S S (4.2)

(1+i)"1

Since this is independent of n , we see that the effective rate of interest
is identical to the compound rate of interest we met earlier

We can think of compound discount as an investor lending an amount
(1-d) at time 0 in return for a repayment of 1 at time 1. The sum of

(1-d) may be considered as a loan of 1 (to be repaid after 1 unit of time)

on which interest of amount d is payable in advance. Accordingly d is
called the rate of discount (or the effective rate of discount) per unit time.

We can also show that the effective rate of discount is identical to the
compound rate of discount we met earlier.

Equivalent rates

Two rates of interest and/or discount are equivalent if a given amount of

principal invested for the same length of time produces the same
accumulated value under each of the rates.
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Comparing formulae (2.3) and (3.2), we see that:
v=1-d (5.1)
And from (2.2) and (5.1) we obtain the rearrangements:

d=iv (5.2)
and: d=—+ (5.3)

Recall that d is the interest paid at time 0 on a loan of 1, whereas i is
the interest paid at time 1 on the same loan. If the rates are equivalent
then if we discount i from time 1 to time 0 we will obtain d . This is the
interpretation of equations (5.2) and (5.3).

Chapter 5 - Interest rates

Nominal rates of interest and discount

Recall from earlier that ‘effective’ rates of interest and discount have
interest paid once per measurement period, either at the end of the
period or at the beginning of the period.

‘Nominal’ is used where interest is paid more (or less) frequently than
once per measurement period.

We denote the nominal rate of interest payable p times per period by itP)
This is also referred to as the rate of interest convertible pthly or
compounded pthly.

A nominal rate of interest per period, payable pthly, iP) | is defined to be

a rate of interest of i(”)/p applied for each pth of a period. For example,
a nominal rate of interest of 6% pa convertible quarterly means an
interest rate of 6/4 =1.5% per quarter.
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Hence, by definition, iP is equivalent to a pthly effective rate of interest
of iP/p.

Therefore the effective interest rate i is obtained from:

i \P
1+i= 1+T (6.1)

Note that iV =i.

The treatment of problems involving nominal rates of interest (or
discount) is almost always considerably simplified by an appropriate
choice of the time unit.

By choosing the basic time unit to be the period corresponding to the
frequency with which the nominal rate of interest is convertible, we can

use i(p)/p as the effective rate of interest per unit time. For example, if

we have a nominal rate of interest of 18% per annum convertible
monthly, we should take one month as the unit of time and 1'2% as the
rate of interest per unit time.

We denote the nominal rate of discount payable p times per period by

d'P) . This is also referred to as the rate of discount convertible pthly or
compounded pthly.

A nominal rate of discount per period payable pthly, d(P) , is defined as

a rate of discount of d(”)/p applied for each pth of a period.

Hence, by definition, diP) s equivalent to a pthly effective rate of
discount of dP /p .
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55 Therefore the effective discount rate d is obtained from:

a®
1-d=1-— 6.2
-2 62

56 Note that d" =d.

The force of interest

57 We assume that for each value of i there is number, § , such that:

lim iP) =8
p—e

58 ¢ is the nominal rate of interest per unit time convertible continuously
(or momently). This is also referred to as the rate continuously
compounded. We call it the force of interest.

59 Euler’s rule states that:

X n
lim[1+Z | =e*
n—eo n

Applying this to the right-hand-side of (6.1) gives:

(P
lim |[1+17— | =&
p

p—e
Hence:

1+i=¢e° (7.1)
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Since v=(1+ i)*1 , we have:

v=e? (7.2)

From equation (7.2) we have:
vi= (e—é‘)t _e 0t
Hence, the discount factor for a force of interest § is:

v(n)=e"

It can also be shown that:

lim dP) = ¢

p—e

However, dP) tends to this limit from below whereas i?) tends to this
limit from above.

Hence, we have:

d<d®@ <«d® c..c5<... <i® @

Relationships between effective, nominal and force of interest

Recall that effective interest i can be thought of as interest paid at the
end of the period. Hence, an investor lending an amount 1 at time 0
receives a repayment of (1+/) at time 1.

Similarly, nominal interest convertible pthly can be thought of as the
total interest per unit of time paid on a loan of amount 1 at time 0, where
interest is paid in p equal instalments at the end of each pth subinterval

(ie at times 1/p,2/p,3/p,...,1).
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Since i(P) is the total interest paid and each interest payment is of
amount i(”)/p then the accumulated value at time 1 of the interest
payments is:

j(P) i(P) j(P)
'_(1 +i)P-NP +'_(1 +i)P-2AP . 1
P P P

Hence:

ilP) = p[(1 +iylP - 1}

Recall that effective discount d can be thought of as interest paid at the
start of the period. Hence, an investor lending an amount 1 at time 0
receives a repayment of 1 at time 1, but d is paid at the start so a sum
of (1-d) is lent at time 0.

Similarly, d'P) is the total amount of interest per unit of time payable in
equal instalments at the start of each pth subinterval (ie at times
0,1/p,2/p,....(P-1/p).

As a consequence the present value at time 0 of the interest payments
is:

(P) (P) (p)
d_+dT(1 —d)'P 4+ ... +dT(1 —d)P-P _g

Hence:

dP) = p[1—(1—d)1/p}

Now J§ is the total amount of interest payable as a continuous payment
stream, je an amount Jdt is paid over an infinitesimally small period dt
at time t.
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As a consequence the accumulated value at time 1 of these interest
payments is:

1
[o(+iytdt
0
which, by symmetry, is equal to:
1
[o(1+i)dt=i
0
Hence:

S=In(1+i) or e =1+i

It is essential to appreciate that, at force of interest § per unit time, the
five series of payments illustrated in Figure 1 below all have the same
value.

1 2 3 -1
0 - = = . P2y time
p P p P
(1 d
2 dP) dP) dP) dP) dP)
p P P P P
(3) ﬂ ﬂ ﬂ ﬂ iP
P P P P p equivalent
4) i payments
5 = é =

Figure 1 Equivalent payments
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Force of interest as a function of time

69 The force of interest is the instantaneous change in the fund value,
expressed as an annualized percentage of the current fund value.

So the force of interest at time t is defined to be:

‘/tr

5(t) = v

where V; is the value of the fund at time t and V; is the derivative of

V; with respectto t.

Hence:

d
5(!‘) = Eln\/t

Integrating this from t; to t, gives:

2 t, Y,
[ o(t)dt =[|nv,]t1 =InV, —InV, =In %
t t

Vtz— t2§t dt
—2 _ ¢

t

70 Hence:

)
A(ty,t;) = exp [ Ja() dtJ

t
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For the case when the force of interest is constant, § , between time 0
and time n , we have:

n

Jodt
A(0,n)=e® =¢e°"
Hence:
(1+i)" =e®"
Therefore:
(1+i)= e’
as before.

Although the force of interest is a theoretical measure it is the most
fundamental measure of interest (as all other interest rates can be
derived from it). However, since the majority of transactions involve
discrete processes we tend to use other interest rates in practice.

It still remains a useful conceptual and analytical tool and can be used
as an approximation to interest paid very frequently, eg daily.

Chapter 7 — Discounting and accumulating
Present values of cashflows
In many compound interest problems one must find the discounted

present value of cashflows due in the future. It is important to
distinguish between (a) discrete and (b) continuous payments.
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The present value of the sums ¢, c ,...,¢; due at times t,1,,..., t,

(where 0<t; <ty <...<t,)is:
n
Ce, V() +C, V(t2) +-- 4 V(ty) = D ¢y v(t))
j=1

If the number of payments is infinite, the present value is defined to be:
2 cvit))
j=1

provided that this series converges. It usually will in practical problems.

Suppose that T >0 and that between times 0 and T an investor will be
paid money continuously, the rate of payment at time t being £ p(t) per

unit time. What is the present value of this cashflow?
In order to answer this question it is essential to understand what is
meant by the rate of payment of the cashflow at time t. If M(t) denotes

the total payment made between time 0 and time t, then by definition:
p(t)=M'(t) forallt

Then, if 0 <a < §<T, the total payment received between time o and

time g is:

B B
M(B)-M(cx) = [ M'(t)dt = | p(t)dt (8.1)

Thus the rate of payment at any time is simply the derivative of the total
amount paid up to that time, and the total amount paid between any two
times is the integral of the rate of payments over the appropriate time
interval.
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Between times t and t+dt the total payment received is
M(t+dt)—M(t). If dt is very small this is approximately M’(t)dt or
p(t)dt . Theoretically, therefore, we may consider the present value of
the money received between times t and t+dt as v(t)p(t)dt. The
present value of the entire cashflow is obtained by integration as:

;
[v(t)p(t)dt
0

If T is infinite we obtain, by a similar argument, the present value:

[v(t)p(t)dt
0

By combining the results for discrete and continuous cashflows, we
obtain the formula:

Y cev(t)+ [ v(t)p(t)dt (8.2)
0

for the present value of a general cashflow (the summation being over
those values of t for which ¢;, the discrete cashflow at time ¢, is

non-zero).

So far we have assumed that all payments, whether discrete or
continuous, are positive. If one has a series of income payments (which
may be regarded as positive) and a series of outgoings (which may be
regarded as negative) their net present value is defined as the difference
between the value of the positive cashflow and the value of the negative
cashflow.
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The value at time t; of the sum C due at time t, is defined as:
(a) If t;>t,, the accumulation of C from time ¢, until time ¢, ; or
(b) If t; <t,, the discounted value at time t; of C due at time ¢, .

In both cases the value at time t; of C due at time ¢, is:
Cexp[— N é‘(t)dt} 9.1)
1

(Note the convention that, if t, > t,, j:z S(t)dt =— _[:1 S(t)ydt.)
1 2
Since:
t t. t
I t: (t)ydt = [ &(t)dt - | o S(t)at

it follows immediately from Equation (9.1) that the value at time t; of C
due at time ¢, is:

¢ Vit2)

9.2
v(ty) 6.2)

The value at a general time t, of a discrete cashflow of ¢, attime t (for
various values of t) and a continuous payment stream at rate p(t) per
time unit may now be found, by the methods given earlier, as:

V(t ) +[7p V(t)

9.3
vit) N ™ 8.3)

where the summation is over those values of t for which ¢; 0.
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We note that in the special case when t; = 0 (the present time), the value
of the cashflow is:

Yev(t)+ [~ p(t)v(t)dt
where the summation is over those values of t for which ¢, = 0.

This is a generalisation of formula (8.2) to cover the past as well as
present or future payments. If there are incoming and outgoing
payments, the corresponding net value may be defined, as earlier, as the
difference between the value of the positive and the negative cashflows.
If all the payments are due at or after time t,, their value at time t; may

also be called their ‘discounted value’, and if they are due at or before
time t,, their value may be referred to as their ‘accumulation’.

It follows that any value may be expressed as the sum of a discounted
value and an accumulation. This fact is helpful in certain problems.
Also, if t; =0 and all the payments are due at or after the present time,

their value may also be described as their ‘(discounted) present value’,
as defined by formula (8.2).

It follows from formula (9.2) that the value at any time t; of a cashflow
may be obtained from its value at another time t, by applying the factor
V(tz)/V(t1) , ie:

[Value at time t; | _[ Value attime t, | [ v(t,)
| of cash flow of cash flow v(ty)

or:

[Value at time ¢, |

Value at time ¢,
of cash flow

} [v(tz ):| (9.4)

| of cash flow

Each side of Equation (9.4) is the value of the cashflow at the present
time (time 0).
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In particular, by choosing time t, as the present time and letting t; =t¢,
we obtain the result:

[Value at time t}

Value at the present 1
of cash flow

time of cash flow v(t)

These results are useful in many practical examples. The time 0 and the
unit of time may be chosen so as to simplify the calculations.

Interest income

Consider now an investor who wishes not to accumulate money but to
receive an income while keeping his capital fixed at C. If the rate of
interest is fixed at i per time unit, and if the investor wishes to receive
income at the end of each time unit, it is clear that the income will be iC

per time unit, payable in arrear, until such time as the capital is
withdrawn.

However, if interest is paid continuously with force of interest 5(t) at

time t then the income received between times t and t+dt will be
Cs(t)dt.

So the total interest income from time 0 to time T will be:

IT) =[] Ca(t) dt

If the investor withdraws the capital at time T , the present values of the
income and capital at time 0 are:

Cl;(t(tydt and  Cv(T)

respectively.
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